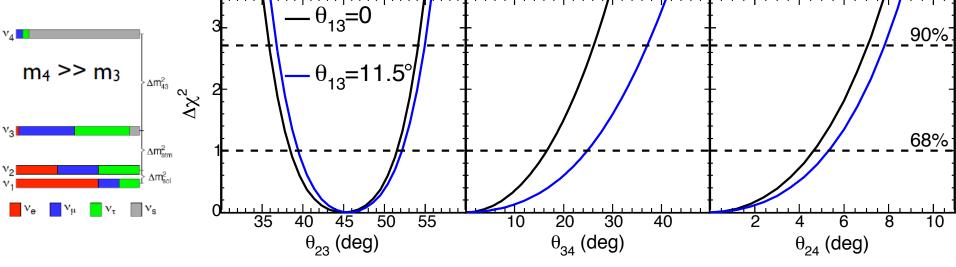


MINOS Search for Sterile Neutrino Mixing

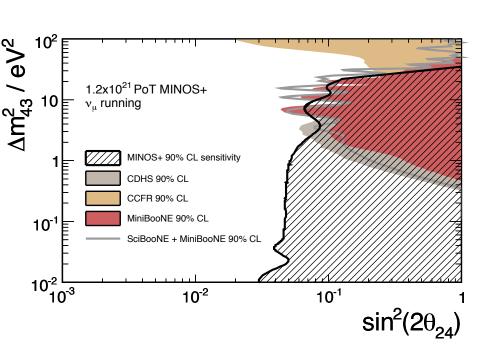
- Transitions of active neutrino flavors to sterile neutrinos would result in a deficit of neutral current events observed at the MINOS Far Detector.
- Observed MINOS neutral current spectrum is shown on the right, along with spectra predicted from the Near Detector for oscillations among three active neutrinos with V_e appearance set at the global fit value from P. A. N. Machado et al., Journal of High Energy Physics, 2012, Number 5, 23.
- Agreement between the observed and predicted neutral-current spectra is quantified using the statistic R, tabulated on the right for different ranges of the calorimetrically reconstructed energy E_{reco} .

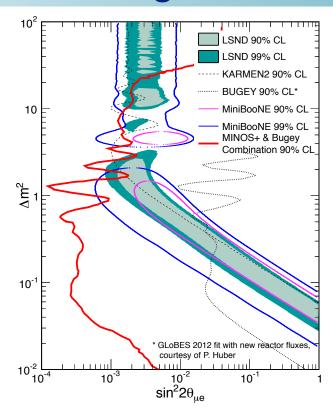

$$R = \frac{N_{\text{Data}} - \sum B_{\text{CC}}}{S_{\text{NC}}}$$

	violoto Energy (Gov)						
E _{reco} (GeV)	N_{Data}	S _{NC}	$B^{ u_{ m LC}}_{ m CC}$	$B^{ u_{ extsf{CC}}}_{ extsf{CC}}$	$B_{ m CC}^{ u_e}$		
0 – 3	327	245.6	32.5	3.2	2.7 (12.4)		
3 - 200	476	267.8	157.4	9.3	30.6 (44.7)		
0 - 200	803	513.4	190.0	12.5	33.2 (57.0)		
0 – 3	$R = 1.14 \pm 0.07 \pm 0.08$						
3 - 200	$R = 0.99 \pm 0.08 \pm 0.06$						
0 - 200	$R = 1.06 \pm 0.06 \pm 0.06$						

MINOS Search for Sterile Neutrino Mixing

Model	θ_{13}	$\chi^2/\text{d.o.f.}$	θ_{23}	θ_{24}	θ_{34}
$m_4 \gg m_3$		130.4/122 128.5/122			


• 90% C.L. Limits from I-D $\Delta \chi 2$ projections


$$\theta_{34} < 26^{\circ} (37^{\circ} \text{ V}_{e}) (90\% \text{ C.L.})$$

 $\theta_{24} < 7^{\circ} (8^{\circ} \text{ V}_{e}) (90\% \text{ C.L.})$

- Results of fitting the data with a 3+1 model including one sterile neutrino and a new mass eigenstate V₄. Stringent constraints are placed on the sterile mixing angles.
- This 4-flavor analysis is being refined with the inclusion of Near Detector oscillations, relevant for values of $\Delta m^2_{43}>1$ eV². Results are expected in Summer 2012.
- The new model has been used to assess the reach of MINOS+ in excluding sterile neutrino mixing, as shown in the next slide.

MINOS Search for Sterile Neutrino Mixing

- MINOS+ 90 % CL exclusion of $\sin^2(2\theta_{24})$ compared to MiniBooNE, CDHS, and CCFR ν_{μ} disappearance results. The MiniBooNE, CDHS, and CCFR contours come from Phys. Rev. Lett. 103 (2009) 061802 and show the MiniBooNE disappearance result. The Δm^2 value for CDHS, MiniBooNE and CCFR is for mass states m2 and m4. Because m₄ >> m₃, Δm^2_{42} is nearly the same as Δm^2_{43} .
- MINOS+ and Bugey combined 90% CL limit on the sterile parameter $\sin^2(2\theta_{\mu e})=4|U_{e4}|^2|U_{\mu 4}|^2$, obtained from the disappearance limits of each experiment on the size of $|U_{\mu 4}|^2$ and $|U_{e 4}|^2$. The Bugey limit is computed from a GLoBES 2012 fit provided by P. Huber.
- The combined limit excludes large portions of the LSND signal region.